Experimental Analysis Using USRP for Novel Wavelet-Based Spectrum Sensing for 2.2 GHZ Band Communication Using LabVIEW
نویسندگان
چکیده
Spectrum sensing allows cognitive radio systems to detect relevant signals even in the presence of interference for reliable communication. Most existing spectrum techniques use a particular signal-to-noise ratio model with assumptions and provide certain detection performance. Dynamic management enabled efficient allocation channels increasing number users. In system, dynamic is channel occupancy mobilizing secondary user towards unused primary channel. For sensing, wavelet-based method analyzed effectively made decision. The performance analysis various SNR values enhanced false alarm throughput system 2.2 GHZ band
منابع مشابه
analysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولWavelet-Based Spectrum Sensing for Cognitive Radios using Hilbert Transform
For cognitive radio networks, there is a major spectrum sensing problem, i.e. dynamic spectrum management. It is an important issue to sense and identify the spectrum holes in cognitive radio networks. The first-order derivative scheme is usually used to detect the edge of the spectrum. In this paper, a novel spectrum sensing technique for cognitive radio is presented. The proposed algorithm of...
متن کاملSpectrum Sensing using USRP SDRs and Convolutional Neural Networks
Current allocation of the spectral bands to only licensed users leads to inefficiencies in spectrum utilization. Designing realistic cognitive radios that are capable of sensing spectrum holes is the key to solve this problem and to increase the capacity of next-generation wireless networks. In this paper, we propose convolutional neural networks for predicting the spectrum holes from a data se...
متن کاملWavelet analysis of EEG using LABVIEW
The Electroencephalogram (EEG) is a biological signal that represents the electrical activity of the brain and is the main resource of information for studying neurological disorders. Corruption of EEG signal is caused by occurrence of various artifacts like line interference, electroculogram, electrocardiogram and muscle activity [3]. These artifacts resources increase the difficulty in analyz...
متن کاملSpectrum Sensing with USRP-E110
Spectrum sensing is one of the key topics towards the implementation of future wireless services like SuperWiFi. This new wireless proposal aims at using the freed spectrum resulting from the analog-todigital transition of TV channels for wireless data transmission (UHF TV White Spaces). The benefits range from better building penetration to longer distances when compared to the set of IEEE 802...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nanomaterials
سال: 2022
ISSN: ['1687-4110', '1687-4129']
DOI: https://doi.org/10.1155/2022/4947224